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Abstract

The effect of radiation and variable viscosity on a MHD free convection flow past a semi-infinite flat plate with an
aligned magnetic field has been studied in the case of unsteady flow. The plate is moved with a constant velocity, which
is in the same or opposite direction to the free stream velocity. The fluid viscosity is assumed to vary as an inverse linear
function of temperature. The effect of the induced magnetic field has been included in the analysis. The governing
partial differential equations have been solved numerically using the finite difference method. The velocity, the x-
component of the induced magnetic field and heat transfer characteristics of the flow are determined © 2001 Elsevier

Science Ltd. All rights reserved.
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1. Introduction

The theory of laminar boundary layer flows on a
moving surface occur in several engineering applications.
Aerodynamic extrusion of a plastic sheet, the cooling of
an infinite metallic plate in a cooling bath, the boundary
layer along a liquid film in condensation processes and a
polymer sheet or filament extruded continuously from a
dye, or a long thread travelling between a feed roll and
a wind-up roll, are examples of practical applications.

Elbashbeshy [2] investigated heat transfer over a
stretching surface with variable and uniform surface
heat flux subjected to injection and suction. Vayjravelu
et al. [3] studied the convective heat transfer in an elec-
trically conducting fluid near an isothermal stretching
sheet and they studied the effect of internal heat gener-
ation or absorption. Chamkha [4] studied the problem
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of steady, laminar, free convection flow over a vertical
porous surface in the presence of a magnetic field and
heat generation or absorption.

All the above investigations are restricted to MHD
flow and heat transfer problems. However, of late the
radiation effect on MHD flow and heat transfer prob-
lems have become more important industrially. At high
operating temperature, radiation effect can be quite
significant. Many processes in engineering areas occur at
high temperatures and a knowledge of radiation heat
transfer becomes very important for the design of per-
tinent equipment. Nuclear power plants, gas turbines
and the various propulsion devices for aircraft, missiles,
satellites and space vehicles are examples of such
engineering areas. Most of the existing analytical studies
for this problem are based on the constant physical
properties of the ambient fluid. However, it is known
that these properties may change with temperature,
especially for the fluid viscosity. To accurately predict
the flow and heat transfer rates, it is necessary to take
into account this variation of viscosity (see [5]). Since the
radiation and the variable viscosity are quite compli-
cated, many aspects of its effect on free convection flows
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Nomenclature Uso free stream velocity
v velocity component in the y-direction
a constant x,y  distance along and perpendicular to the plate
C specific heat at constant pressure
P pect , . pressu Greek symbols
ey Plank’s function o
o o thermal diffusivity
F radiation parameter e eppe s
. . o magnetic diffusivity
g acceleration due to gravity .
p magnetic force number
G, Grashof number . .
. b coefficient of volume expansion
H, constant magnetic field .
. . Y thermal property of the fluid
H,, H, induced magnetic field components along . . .
. n dimensionless co-ordinate
and perpendicular to the plate . . .
. . \J kinematic viscosity
k; absorption coefficient . .
A reciprocal of the magnetic Prandtl number
L the length of the plate densit
P Prandtl number f ma n(Zcic ermeabilit
qr radiative heat flux Ho € P y ..
& ratio of the wall to free stream velocities
T temperature
. 0, constant
t time . ..
a electrical conductivity
T: constant .
V] stream function
Ty wall temperature
t* dimensionless time Subscripts
Ty free stream temperature e condition at the edge
u velocity component in the x-direction w condition at the surface
ast a semi-infinite flat plate in the presence of an 11 1
pa : P preser —=—[l4+9(T-T.)] or —=a(T—-T),
aligned magnetic field have not been studied in the case TR TR I

of unsteady flow. Hence, we propose investigating the
radiation and variable viscosity effects on unsteady free
convection flows in the presence of an aligned magnetic
field. The governing partial differential equations have
been solved numerically using the finite difference
method [6]. The velocity, the x-component of the in-
duced magnetic field, and heat transfer characteristics of
the flow are calculated.

2. Mathematical formulation

Consider the unsteady laminar, incompressible, vis-
cous, electrically conducting fluid flowing past a fixed
semi-infinite plate having a constant free stream velocity
U. The fluid is considered to be a gray, absorbing or
emitting radiation, but non-scattering medium and the
Rosseland approximation is used to describe the radi-
ative heat flux in the energy equation. The fluid has
p, v, o, 4, and o, all these quantities are supposed to be
constant. A constant magnetic field H, is applied parallel
to the plate outside the boundary layer. We assume that
the normal component of the induced magnetic field H,
vanishes at the wall and the parallel component H, ap-
proaches the given value H, at the edge of the boundary
layer. The fluid properties are assumed to be isotropic
and constant, except for the fluid viscosity which is as-
sumed to be an inverse linear function of temperature

(see [1]).

where a = p/u,, and T, = T, — 1 /7.

Both a and 7, are constant, and their values depend
on the reference state and the thermal property of the
fluid, i.e., y. In general a > 0 for liquids and a < 0 for
gases. We further assume that the Ohmic dissipation
term and the Hall effects have been neglected. The wall
temperature 7, and the free stream temperature 7,, are
taken as being constant.

Under the usual boundary layer approximation, the
flow and heat transfer in the presence of radiation and
variable viscosity are governed by the following equa-
tions [7]:

ou v
ou_ Ov_ 1
5y 0, (1)
0H, oH,
ot | O 2
xta =0 (2)
ou, Ou, Ou_10( Ou
a "axTs T r e\ My
Ko aHl 6H1
Rolp &0 g, &0 3
+p{16x+ 26y ’ (3)
6H1 6H1 aHl 614 6“ . 62H1
Vs T Tm g T Mg @

or  or  oT T 1 0
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The boundary conditions are given by

0H,
U= Uy, U:sz—I:O, I'=1T, aty=0,
oy (6)

U— Uy, HH - Hy, T— T, asy— oo.

Here H, is the applied magnetic field parallel to the
x-axis in the free stream, H, and H, are the components
of the induced magnetic field in the x and y directions,
respectively. Greif et al. [8] followed closely the analysis
of Cogley et al. [9] who showed that, for an optically
thin limit, the fluid does not absorb its own emitted
radiation, i.e., there is no self-absorption, but the fluid
does absorb radiation emitted by the boundaries. Cogley
et al. [9] showed that, in the optically thin limit for a

gray-gas near equilibrium, the following relation holds:
oy

where

o ae‘b;
1= A - A
/0 k/“w ( aT )W d

In order to reduce the number of independent variables
from three to two and to make the governing equations
dimensionless, we apply the following transformations:

uOO 1/2 — ! *
= [T} X 1/2y7 u=uyf'(n,t),
Y
oy’ ox’

. " o
V= () VP 00), h=

vx 1/2
¢ =H, (*) gl 1),

* T_T
0n, 1) = 72—~

uDO
gB L’ AT
G ==, ()
4112
F=—> "  =uyt/x,
oy AN
T, — Ty 1
er = = - 5
Ty — T V(Tw*TOO)
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H=—, H=——
1 ay7 2 ox )
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H, :HOg/(rht*)v ﬁ:ﬂng/P“ioa Szu_< L.
The prime denotes derivatives with respect to 7.
Then Egs. (1)—(5) become
1 0—6
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r=2(5)0r+ (550)
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+2pt < 0 ){g 3 ¢ at*} 0, (8)

og’ og of
mn " _ 1 _ * ! _ "
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et -] o ©
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(10)
The boundary conditions are given by

f(ovt*):g(OJ*):g//(ovt*)ZG(ovt*):Q (11)
f,(o’t*) =& f’(oo,t*) :g/(OOJ*) = O(OOtx) =1

and the initial conditions are given by the steady-state
equations, obtained by putting #* =0 and 9/0t* =0 in
Egs. (8)—(10), where f is the magnetic force number,
which is the square of the ratio of the Alfven speed to
the free stream velocity, and / is the reciprocal of the
magnetic Prandtl number, which is the ratio of the vis-
cous and the magnetic diffusivity.

We have solved the parabolic partial differential
equations (8)—(10) under the boundary conditions (11)
and the initial conditions by using an implicit, iterative,
tridiagonal finite-difference method similar to that dis-
cussed by Blottner [6]. These equations are integrated
by a shooting method, fourth-order Runge-Kutta,
with step size 0.01. It is worth mentioning here that for
y — 0; i.e., u = u, (constant) then 6, — oo and Eq. (8)
reduces to that of Takhar et al. [7]. Also, when F =0
then Eq. (10) reduces to the same reference. It is also
important to note that 0, is negative for liquids and
positive for gases, when (T, — T,.) is positive, see Lai
and Kulacki [1]. It is observed here that radiation and
variable viscosity does affect the velocity and tempera-
ture field of free convection flow of an electrically con-
ducting fluid. The velocity component f’(n, ) and the
x-component of the induced magnetic field g'(n,¢*) as
well as the temperature 0(n,¢*) distribution are pre-
sented in Figs. 1-3 for various values of F, 0., and / at
¢=0.1 and r* = 0.01.

3. Results and discussion

To study the behavior of the velocity, the x-compo-
nent of the induced magnetic field and temperature
profiles, curves are drawn for various values of the
parameters that describe the flow.

Fig. 1(a) shows that f”(, t*) decreases with increasing
the viscosity parameter 0,. But the temperature 0(1, t*)
increases as the viscosity parameter 6, increase as seen in
Fig. 1(b) The results presented demonstrate quite clearly
that 6., which is an indicator of the variation of viscosity
with temperature, has a substantial effect of the drag and
heat transfer characteristics as well as the velocity and
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Fig. 1. The effect of the viscosity parameter 6, on: (a) the velocity profiles /’(n, ") and (b) the temperature profiles 6(n, t*), for Pr = 0.7,
A=10, p=0.5and F = 3.
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Fig. 2. The effect of the radiation parameter F on: (a) the velocity profiles /' (1, ) and (b) the temperature profiles 6(n, *), for Pr = 0.7,
4 =10, f = 0.5 and 0, = —0.1.
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Fig. 3. The effect of reciprocal of the magnetic Prandtl number 1 on: (a) the velocity profiles f”(n, t*), (b) the induced magnetic field
profiles g'(n,t*) and (c) the temperature profiles 6(n, "), for Pr=10.7, f = 0.5, F =3 and 6, = —0.1.
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temperature distributions within the boundary layer
over a continuous moving flat plate.

Fig. 2(a) shows that f”(y, t*) decreases with increasing
the radiation parameter F. It is seen from Fig. 2(b) that
the temperature 0(y,¢*) decreases as the radiation pa-
rameter F increases. This result qualitatively agrees with
expectations, since the effect of radiation is to decrease
the rate of energy transport to the fluid, thereby de-
creasing the temperature of the fluid.

Fig. 3 present the effect of the reciprocal of the
magnetic Prandtl number A on f'(n,7), g (n,¢*) and
O(n,r*). It is observed from these profiles that the effect
of A is more pronounced on g’'(n,¢*) and its effect on
0(n,t*) is very small. This is because 4 occurs in the
equation for the induced magnetic field and its effect on
0(n,¢*) is indirect. The effects of magnetic force param-
eter f# and the time * have been studied in [7].
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